Sets avoiding norm 1 in \mathbb{R}^{n}

Christine Bachoc

Université de Bordeaux, IMB

Computation and Optimization of Energy, Packing, and Covering ICERM, Brown University, April 9-13, 2018

The chromatic number of the plane

- The Hadwiger-Nelson problem 1950: What is the least number of colors needed to color \mathbb{R}^{2} such that two points at Euclidean distance 1 receive different colors?
- In 1950 Nelson introduced this number $\chi\left(\mathbb{R}^{2}\right)$ and together with Isbell proved that:

$$
4 \leq \chi\left(\mathbb{R}^{2}\right) \leq 7
$$

- On April 8, 2018, Aubrey de Grey posted on arXiv a paper proving $\chi\left(\mathbb{R}^{2}\right) \geq 5$. He constructs a unit distance graph in the plane with chromatic number 5 and with 1585 vertices (independently verified with SAT solvers).

The unit distance graph on \mathbb{R}^{n}

- The unit distance graph has vertices \mathbb{R}^{n} and edges $\{x, y\}$ where $\|x-y\|=1$
- Its chromatic number is denoted $\chi\left(\mathbb{R}^{n}\right)$.
- Its independent sets are sets avoiding distance 1.

$$
A \subset \mathbb{R}^{n} \text { avoids distance } 1 \text { if }\|x-y\| \neq 1 \text { for all } x, y \text { in } A .
$$

Example: the color classes of an admissible coloring.

- If A is measurable, it has a (upper) density $\delta(A)$. Let

$$
m_{1}\left(\mathbb{R}^{n}\right):=\sup \{\delta(A), A \text { measurable, avoids distance } 1\}
$$

- For the measurable chromatic number $\chi_{m}\left(\mathbb{R}^{n}\right)$, the color classes are assumed to be measurable and we have:

$$
\chi_{m}\left(\mathbb{R}^{n}\right) \geq \frac{1}{m_{1}\left(\mathbb{R}^{n}\right)}
$$

- Obviously $\chi_{m}\left(\mathbb{R}^{n}\right) \geq \chi\left(\mathbb{R}^{n}\right)$. Falconer 1981: $\chi_{m}\left(\mathbb{R}^{n}\right) \geq n+3$ for all $n \geq 2$.

Sets avoiding distance 1

- A set avoiding distance 1 in the plane: open disks of diameter 1 , whose centers are hexagonal lattice points with pairwise minimal distance 2.

- Best known lower bound for $m_{1}\left(\mathbb{R}^{2}\right)$: Croft 1967 Hexagonal arrangement of tortoises (disks cut out by hexagons) of density $\delta \approx 0.229$

The combinatorial upper bounds for $m_{1}\left(\mathbb{R}^{n}\right)$

- Let $G=(V, E)$ a finite subgraph embedded in \mathbb{R}^{n} (ie the edges are the pairs of vertices at distance 1 apart).
Let $\alpha(\mathbb{G})$ be its independence number.

$$
\triangle \alpha(G)=2
$$

- We have:

$$
m_{1}\left(\mathbb{R}^{n}\right) \leq \frac{\alpha(G)}{|V|}
$$

Proof: let A be a subset of \mathbb{R}^{n} avoiding 1. A translated copy of G has on average $|V| \delta(A)$ vertices in A, but also at most $\alpha(G)$ vertices in A.

- Larman Rogers 1972: good graphs for small dimensions. Improved by Szekely Wormald 1989. Frankl Wilson 1981, Raigorodskii 2000:

$$
m_{1}\left(\mathbb{R}^{n}\right) \lesssim(1.239)^{-n}
$$

The eigenvalue upper bound for $m_{1}\left(\mathbb{R}^{n}\right)$

- Oliveira, Vallentin 2010: if ω is the normalized surface measure of S^{n-1},

$$
m_{1}\left(\mathbb{R}^{n}\right) \leq \frac{-\min \widehat{\omega}(u)}{1-\min \widehat{\omega}(u)}
$$

- This is a continuous analog of Hoffman bound for finite d-regular graphs:

$$
\frac{\alpha(G)}{|V|} \leq \frac{-\lambda_{\min }\left(A_{G}\right)}{d-\lambda_{\min }\left(A_{G}\right)}
$$

- The Fourier transform of the surface measure on S^{n-1} expresses in terms of the Bessel function $J_{n / 2-1}$:

$$
\widehat{\omega}(u)=\Omega_{n}(\|u\|)=\Gamma(n / 2)(2 /\|u\|)^{n / 2-1} J_{n / 2-1}(\|u\|)
$$

The eigenvalue upper bound for $m_{1}\left(\mathbb{R}^{n}\right)$

- Asymptotically the eigenvalue bound is not as good as the combinatorial bound:

$$
\frac{-\min \widehat{\omega}(u)}{1-\min \widehat{\omega}(u)} \approx(\sqrt{e / 2})^{-n} \approx(1.165)^{-n}
$$

- It can be strengthened through extra constraints, leading to the best known bounds for $2 \leq n \leq 24$.

Oliveira Vallentin 2018: A general framework using the cone of boolean quadratic constraints (Fernando's talk last monday).

- Combined with combinatorial constraints it also leads to: [B., Passuello, Thiery 2013]

$$
m_{1}\left(\mathbb{R}^{n}\right) \cong(1.268)^{-n}
$$

Non euclidean norms

- What about other norms?

In particular what about norms defined by a convex symmetric polytope P ?

- Examples: $\left\|\|_{\infty}\right.$ corresponds to the hypercube; $\| \|_{1}$ corresponds to the crosspolytope.
- In general, $\left\|\|_{P}\right.$ is defined by

$$
\|x\|_{P}=\min \{\lambda \mid x \in \lambda P\}
$$

and we have similar notions of $m_{P}\left(\mathbb{R}^{n}\right), \chi_{P}\left(\mathbb{R}^{n}\right)$.

- The 1-avoiding problem appears to be related to (and more difficult than) the packing problem, in particular if there is a tight packing. Maybe it is easier to analyze if the packing problem is easy or even trivial.

Polytopes that tile space

- If the polytope P tiles space by translations then the density $1 / 2^{n}$ is attained by

$$
A=\cup_{x \in L}(x+P / 2)
$$

Conjecture

(B., Sinai Robins) If P is a convex polytope that tiles \mathbb{R}^{n} by translations then

$$
m_{P}\left(\mathbb{R}^{n}\right)=1 / 2^{n}
$$

- The 2^{n} translates of A provide an admissible measurable coloring of \mathbb{R}^{n} so the conjecture also implies that $\chi_{P, m}\left(\mathbb{R}^{n}\right)=2^{n}$.

Convex symmetric polytopes that tile space by translations

- Lattices give rise to such polytopes: their Dirichlet-Voronoï cells.
- In dimension 2, two combinatorial types: the rectangle and the hexagon.

- In dimension 3, there are 5 combinatorial types:

\mathbb{Z}^{3}

$$
A_{2} \perp \mathbb{Z}
$$

$$
A_{3} \quad\left(\begin{array}{lll}
2 & 0 & 1 \\
0 & 2 & 1 \\
1 & 1 & 3
\end{array}\right)
$$

$$
A_{3}^{\#}
$$

- Voronoï conjecture 1908: a translative convex polytope is the affine image of the Voronoï cell of a lattice. Proved by Delone for $n \leq 4$.

Methods

- The combinatorial bound:

$$
m_{P}\left(\mathbb{R}^{n}\right) \leq \frac{\alpha(G)}{|V|}
$$

- Example: the hypercube

G is the complete graph $\Rightarrow m_{P}\left(\mathbb{R}^{n}\right)=1 / 2^{n}$
- The eigenvalue-Fourier bound: Let μ be a measure supported on ∂P,

$$
m_{P}\left(\mathbb{R}^{n}\right) \leq \frac{-\min \widehat{\mu}(u)}{\widehat{\mu}(0)-\min \widehat{\mu}(u)}
$$

Recall:

$$
\widehat{\mu}(u)=\int_{\partial P} e^{2 i \pi(x \cdot u)} d \mu(x) \quad \widehat{\mu}(0)=\mu(\partial P)
$$

Joint work with Thomas Bellitto, Philippe Moustrou, Arnaud Pêcher (2017)

Theorem

If P tiles the plane, then

$$
m_{P}\left(\mathbb{R}^{2}\right)=1 / 4
$$

Theorem

If P is the Dirichlet-Voronoï cell of the root lattice $A_{n}, n \geq 2$ then

$$
m_{P}\left(\mathbb{R}^{n}\right)=1 / 2^{n}
$$

If P is the Dirichlet-Voronoï cell of the root lattice $D_{n}, n \geq 4$, then

$$
m_{P}\left(\mathbb{R}^{n}\right) \leq 1 /\left((3 / 4) 2^{n}+n-1\right)
$$

$$
A_{n}:=\mathbb{Z}^{n+1} \cap\left\{\sum_{i=0}^{n} x_{i}=0\right\} \quad D_{n}:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n}: \sum_{i=1}^{n} x_{i}=0 \bmod 2\right\}
$$

The Fourier-eigenvalue bound (P can be any symmetric convex body)

For all μ supported on $\partial P, \quad m_{P}\left(\mathbb{R}^{n}\right) \leq \frac{-\min \widehat{\mu}(u)}{\widehat{\mu}(0)-\min \widehat{\mu}(u)}$

- Let A be 1-avoiding and L-periodic. The auto-correlation function associated to A :

$$
f_{A}(x)=\frac{1}{\operatorname{vol}(L)} \int_{\mathbb{R}^{n} / L} \mathbf{1}_{A}(x+y) \mathbf{1}_{A}(y) d y
$$

- Let $m:=\min \widehat{\mu}(u)$ and

$$
\nu:=\mu-m \delta_{0^{n}} . \quad \text { We have } \widehat{\nu}=\widehat{\mu}-m \geq 0
$$

- We compute in two different ways

$$
\begin{aligned}
\int f_{A}(x) d \nu(x) & =-m f_{A}\left(0^{n}\right)=-m \delta(A) \\
& =\sum_{u \in L^{\#}} \widehat{f}_{A}(u) \widehat{\nu}(u) \geq \widehat{f}_{A}\left(0^{n}\right) \widehat{\nu}\left(0^{n}\right)=\delta(A)^{2}(\widehat{\mu}(0)-m)
\end{aligned}
$$

The Fourier-eigenvalue bound for polytopes On going work with Philippe Moustrou and Sinai Robins

$$
\text { For all } \mu \text { supported on } \partial P, \quad m_{P}\left(\mathbb{R}^{n}\right) \leq \frac{-\min \widehat{\mu}(u)}{\widehat{\mu}(0)-\min \widehat{\mu}(u)}
$$

- Without loss of generality, μ can be chosen invariant under the orthogonal group of P (by convexity argument).
- For $P=S^{n-1}$, it leaves only one possibility up to scaling: the surface measure ω.
- For other P, e.g. polytopes, lots of possibilities! (is it a good or a bad news?)
- How can we optimize over μ ?
- We will see that point measures boil down to polynomial optimization problems when the points have rational coordinates (the polytope having vertices in \mathbb{Z}^{n}).
- Moreover, in this case the weights can be viewed as additional polynomial variables, so optimizing over the weights for a fixed finite support amounts again to solving a polynomial optimization problem.

A toy example

- The square

- We have

$$
\begin{aligned}
\widehat{\mu}(u) & =\frac{1}{4} \sum e^{2 \pi i\left(\pm u_{1} \pm u_{2}\right)}+\frac{1}{2}\left(\sum e^{2 \pi i\left(\pm u_{1}\right)}+\sum e^{2 \pi i\left(\pm u_{2}\right)}\right) \\
& =\cos \left(2 \pi u_{1}\right) \cos \left(2 \pi u_{2}\right)+\cos \left(2 \pi u_{1}\right)+\cos \left(2 \pi u_{2}\right) \\
& =\left(\cos \left(2 \pi u_{1}\right)+1\right)\left(\cos \left(2 \pi u_{2}\right)+1\right)-1
\end{aligned}
$$

- Leading to

$$
\widehat{\mu}(0)=3, \quad \min \widehat{\mu}(u)=-1, \quad \text { bound }=\frac{1}{3+1}=\frac{1}{4}
$$

The hypercube

- The centers of the k -dimensional faces are up to permutation of the coordinates: $(0, \ldots, 0, \pm 1, \ldots, \pm 1)$ with k zeroes.
- The measure μ supported on these points weighted by $1 / 2^{k}$:

$$
x_{j}=\cos \left(2 \pi u_{j}\right), \quad \widehat{\mu}(u)=\prod_{j=1}^{n}\left(x_{j}+1\right)-1
$$

and has total volume $2^{n}-1$ and minimum -1 leading to the sharp bound 2^{-n}.

- In general, if P is invariant under $\{ \pm 1\}^{n}$, the Fourier transform of a measure supported on points with rational coordinates can be expressed as a polynomial in the variable $X_{j}=\cos \left(2 \pi u_{j} / k\right)$ if k is a common denominator of the coordinates.

The crosspolytope $C P_{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}| | x_{1}\left|+\cdots+\left|x_{n}\right| \leq 1\right\}\right.$

- We consider measures supported on:

$$
\partial C P_{n} \cap \frac{1}{k} \mathbb{Z}^{n}=\left\{x \in \frac{1}{k} \mathbb{Z}^{n}| | x_{1}\left|+\cdots+\left|x_{n}\right|=1\right\}\right.
$$

- The orbits of $k x=d$ under the action of $\{ \pm 1\}^{n} . S_{n}$, are represented by the partitions of k in at most n parts:

$$
d=\left(d_{1}, \ldots, d_{n}\right), \quad d_{1} \geq d_{2} \geq \cdots \geq d_{n} \geq 0, \quad d_{1}+\cdots+d_{n}=k
$$

- Let us denote this set $\mathcal{P}_{k, n}$. The Fourier transform of a measure invariant under $\{ \pm 1\} \cdot S_{n}$ and with support contained in $\partial C P_{n} \cap \frac{1}{k} \mathbb{Z}^{n}$:

$$
\widehat{\mu}(u)=\sum_{d \in \mathcal{P}_{k, n}} \lambda_{d} \cos \left(2 \pi \frac{d_{1} u_{1}}{k}\right) \ldots \cos \left(2 \pi \frac{d_{n} u_{n}}{k}\right)
$$

- Using the Chebyshev polynomials T_{ℓ} we obtain a polynomial:

$$
\widehat{\mu}(u)=\sum_{d \in \mathcal{P}_{k, n}} \lambda_{d} T_{d_{1}}\left(X_{1}\right) \ldots T_{d_{n}}\left(X_{n}\right), \quad X_{j}=\cos \left(2 \pi \frac{u_{j}}{k}\right)
$$

The crosspolytope

- It remains to minimize over the variables X and over the weights λ : a polynomial optimization problem that can be treated through sums of squares techniques.

$$
\min \left\{\sum_{d \in \mathcal{P}_{k, n}} \lambda_{d} T_{d_{1}}\left(X_{1}\right) \ldots T_{d_{n}}\left(X_{n}\right):-1 \leq X_{j} \leq 1, \sum \lambda_{d}=2^{n}-1\right\}
$$

- Numerical results for $n=3$:

k	Nb of pts	$\min \hat{\mu}$	Bound
1	6	-7	0.5
2	18	-1.4	0.1666
4	42	-1.3253	0.1592
6	122	-1.3201	0.1586
8	258	-1.3195	0.1586
18	1298	-1.3156	0.1582

The optimal measures on CP_{3}

The distribution of weights in the numerically optimal measure for $k=4,6,8,18$:

More numerical results

- The crosspolytopes

Dimension	Division	Minimum	Bound
3	18	-1.3156	0.1582
4	4	-1.5213	0.09208
5	8	-1.9742	0.05988

- The Voronoï cells of $D_{n}:\|x\|_{P}=\max _{i \neq j} \frac{\left|x_{i}\right|+\left|x_{j}\right|}{2}$

Dimension	Division	Minimum	Bound
3	2	-1.3704	0.1638
4	2	-1.6621	0.09976
5	2	-1.86	0.0566

The optimal support appears to be: the vertices and the middle of two vertices belonging to a common facet.

- The Voronoï cells of $D_{n}^{\#}:\|x\|_{P}=\max \left\{\frac{\|x\|_{\infty}}{2}, \frac{\|x\|_{1}}{n}\right\}$

Dimension	Division	Minimum	Bound
3	4	-1.4143	0.1680
5	2	-2.2202	0.06684

